FBK-HLT: A New Framework for Semantic Textual Similarity
نویسندگان
چکیده
This paper reports the description and performance of our system, FBK-HLT, participating in the SemEval 2015, Task #2 “Semantic Textual Similarity”, English subtask. We submitted three runs with different hypothesis in combining typical features (lexical similarity, string similarity, word n-grams, etc) with syntactic structure features, resulting in different sets of features. The results evaluated on both STS 2014 and 2015 datasets prove our hypothesis of building a STS system taking into consideration of syntactic information. We outperform the best system on STS 2014 datasets and achieve a very competitive result to the best system on STS 2015 datasets.
منابع مشابه
FBK: Machine Translation Evaluation and Word Similarity metrics for Semantic Textual Similarity
This paper describes the participation of FBK in the Semantic Textual Similarity (STS) task organized within Semeval 2012. Our approach explores lexical, syntactic and semantic machine translation evaluation metrics combined with distributional and knowledgebased word similarity metrics. Our best model achieves 60.77% correlation with human judgements (Mean score) and ranked 20 out of 88 submit...
متن کاملFBK-HLT-NLP at SemEval-2016 Task 2: A Multitask, Deep Learning Approach for Interpretable Semantic Textual Similarity
We present the system developed at FBK for the SemEval 2016 Shared Task 2 ”Interpretable Semantic Textual Similarity” as well as the results of the submitted runs. We use a single neural network classification model for predicting the alignment at chunk level, the relation type of the alignment and the similarity scores. Our best run was ranked as first in one the subtracks (i.e. raw input data...
متن کاملFBK-HLT: An Application of Semantic Textual Similarity for Answer Selection in Community Question Answering
This paper reports the description and performance of our system, FBK-HLT, participating in the SemEval 2015, Task #3 "Answer Selection in Community Question Answering" for English, for both subtasks. We submit two runs with different classifiers in combining typical features (lexical similarity, string similarity, word n-grams, etc.) with machine translation evaluation metrics and with some ad...
متن کاملFBK HLT-MT at SemEval-2016 Task 1: Cross-lingual Semantic Similarity Measurement Using Quality Estimation Features and Compositional Bilingual Word Embeddings
This paper describes the system by FBK HLTMT for cross-lingual semantic textual similarity measurement. Our approach is based on supervised regression with an ensemble decision tree. In order to assign a semantic similarity score to an input sentence pair, the model combines features collected by state-of-the-art methods in machine translation quality estimation and distance metrics between cro...
متن کاملFBK-HLT: An Effective System for Paraphrase Identification and Semantic Similarity in Twitter
This paper reports the description and performance of our system, FBK-HLT, participating in the SemEval 2015, Task #1 "Paraphrase and Semantic Similarity in Twitter", for both subtasks. We submitted two runs with different classifiers in combining typical features (lexical similarity, string similarity, word n-grams, etc) with machine translation metrics and edit distance features. We outperfor...
متن کامل